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Interesting discussions have been made recently in references [1–5] on the uniqueness of
angular frequency using harmonic balance from the equation of motion,

ẍ+ x3 =0, x(0)= x0, ẋ(0)=0, (1)

and the energy relation,

(ẋ)2 = 1
2(x

4
0 − x4). (2)

Here overdots denote differentiation with repect to time, t. It is noted that the inclusion
of higher order harmonics in the method of harmonic balance gives better argreement
between the values of the angular frequency as determined from equations (1) and (2). The
non-linear differential equation (1) is a good test equation for which the exact solution
exists in the form of an elliptic function. In order to investigate further, a better non-linear
equation,

ẍ+ x3/(1+ lx2)=0, lq 0, (3)

as suggested by Mickens [5] is considered here.
Multiplying equation (3) by 2ẋ and using the initial conditions

x= x0, ẋ=0 at t=0, (4)

after integration one obtains the energy relation

(ẋ)2 = I(x0)− I(x), (5)

where I(x)= fx

0
{2x3/(1+ lx2)} dx= x2/l−ln(1+ lx2)/l2.

The restoring force function in the equation of motion (3) is an odd function. The
behaviour of oscillations is the same for both negative and positive amplitudes.

From equations (4) and (5), one obtains

g
x= x0

x=0

dx

zI(x0)− I(x)
=g

t=T/4

t=0

dt=
T
4

=
p

2v
, (6)

where T is the period and v is the angular frequency. It should be noted that the integrand
in equation (6) has a pole at the end point of the integration (i.e., at x= x0) which may
affect the accuracy of an integration rule adversely. In such a situation, the general
procedure, as suggested in reference [6], is to modify the integrand by subtracting from
it an expression (integrable in closed form) which eliminates the singularity and yields a
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form which can be integrated numerically. For the present case, equation (6) is written
in the form

p

2v
=

p

2
f(x0)+g

x0

0 6 1

zI(x0)− I(x)
−

f(x0)

zx2
0 − x27 dx, (7)

where f(x0)=z(1+ lx2
0 )/x0. A ten-point Gauss rule was adopted here for evaluating the

integral in equation (7).
Representing the restoring force function as a polynomial, one can write the equation

of motion (3) in the form

ẍ+ x3 s
N

m=0

am (lx2)m =0, (8)

where a0 =1 and the constants am are obtained through the least-squares curve fit of the
function 1/(1+ lx2) for the specified range of x.

The energy relation becomes

(ẋ)2 = s
N

m=0

amlm

(m+2)6(x2
0 )m+2 − (x2)m+27. (9)

For the lowest order harmonic, the periodic solution which satisfies the initial conditions
(4) is

x= x0 cos (vt) (10)

Substituting equation (10) in equations (8) and (9), and neglecting the higher order
harmonic, one obtains angular freqencies vEM and vER , corresponding to the equation of
motion (8) and the energy relation (9), as

v2
EM = x2

0 03
4 +

1
4 s

N

m=1

am 6lx2
0

4 7
m

C(2m+3, m+1)1, (11)

v2
ER = x2

0 05
8 +2 s

N

m=1

am (lx2
0)m

(m+2) 61−C(2m+4, m+2)/4m+271, (12)

where the binomial coefficient, C(n, r)= n!/(r!(n− r)!).
Since the behaviour of oscillations is the same for both negative and positive amplitudes,

and ẋ becomes zero when x is −x0 or +x0, the right side of the energy relation (9) has
(x2

0 − x2) as a common factor. This is the reason why the integrand in equation (6) has
a pole at x= x0 when the energy relation is integrated from t=0 to the quarter period,
t=T/4. The energy relation (9) can be written in the form

(ẋ)2/(x2
0 − x2)= s

N

m=0

amlm

(m+2) 6(x2
0 )m+1 + s

(m+1)

n=1

(x2
0 )m+1− n(x2)n7. (13)
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Substituting equation (10) in equation (13), and neglecting the higher order harmonic, one
obtains the angular freqency vER as

v2
ER = x2

0 034+ s
N

m=1

am (lx2
0 )m

(m+2) 61+ s
(m+1)

n=1

C(2n, n)/4n71, (14)

In order to verify the accuracy of the results, the constants am in the polynomial which
represents the function 1/(1+ lx2) are obtained through the least-squares curve fit by
considering N=3, for the range of =zlx =E1. These are a1 =−0·97040, a2 =0·742183
and a3 =−0·27618. Equations (11), (12) and (14) are written in a simplified form as

v2
EM = x2

0 03
4 +

5
8a1(lx2

0 )+ 35
64a2(lx2

0 )2 + 63
128a3(lx2

0 )31, (15a)

v2
ER = x2

0 05
8 +

11
24a1(lx2

0 )+ 93
256a2(lx2

0 )2 + 193
640a3(lx2

0 )31, (15b)

v2
ER = x2

0 03
4 +

5
8a1(lx2

0 )+ 35
64a2(lx2

0 )2 + 63
128a3(lx2

0 )31, (15c)

Since the expressions in equations (15a) and (15c) are identical, the values of angular
frequency obtained from the equation of motion and the energy relation are the same for
the lowest order harmonic. As one should expect, with the energy relation being the first
integral of the equation of motion, the two procedures have given exactly the same
solution.

The numerically integrated values of v given in Table 1 for a negligibly small value of
l (say, 0·0001) are found to be in good agreement with the exact solution for l=0 [4].
Two factors motivated the present exercise: one is whether the lowest order harmonic
solution is the cause of the disagreement in the values of v as obtained from the equation
of motion and the energy relation, or whether the reason lies elsewhere. It is demonstrated
here that the discrepency is due to the singularity in ẋ (at t=0) creeping into the energy
relation.

T 1

Comparison of angular frequencies

Exact Harmonic balance method
integration, ZXXXXXXXXXXXCXXXXXXXXXXXV

v, vEM , vER , vER ,
l x0 equation (6) equation (15a) equation (15b) equation (15c)

0·0001 0·25 0·21172 0·21651 0·19764 0·21651
0·50 0·42359 0·43301 0·39528 0·43301
1·00 0·84717 0·86599 0·79054 0·86599

1·000 0·25 0·20677 0·21119 0·19336 0·21119
0·50 0·38736 0·39421 0·36379 0·39421
1·00 0·63678 0·64300 0·60545 0·64300



   370

REFERENCES

1. S. H and R. E. M 1993 Journal of Sound and Vibration 164, 179–181. Harmonic
balance: comparison of equation of motion and energy methods.

2. B. N R 1994 Journal of Sound and Vibration 172, 697–699. Comments on
‘‘Harmonic balance: Comparison of equation of motion and energy methods’’.

3. R. E. M 1994 Journal of Sound and Vibration 172, 698–699. Reply to B. Nageswara Rao.
4. S. V. S. N M and B. N R 1995 Journal of Sound and Vibration 183,

563–565. Further comments on ‘‘Harmonic balance: comparison of equation of motion and
energy methods’’.

5. R. E. M 1995 Journal of Sound and Vibration 183, 565. Reply to S. V. S. Narayana Murty
and B. Nageswara Rao.

6. P. J. D and P. R 1975 Methods of Numerical Integration. New York: Academic
Press.


